Minimum rainbow H-decompositions of graphs

نویسندگان

  • Lale Özkahya
  • Yury Person
چکیده

Given graphs G and H, we consider the problem of decomposing a properly edge-colored graph G into few parts consisting of rainbow copies of H and single edges. We establish a close relation to the previously studied problem of minimum H-decompositions, where an edge coloring does not matter and one is merely interested in decomposing graphs into copies of H and single edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

Decomposing infinite matroids into their 3-connected minors

s Elgersburg 2011 Rainbow Cycles in Cube Graphs Jens-P. Bode (Technische Universität Braunschweig) Joint work with A. Kemnitz and S. Struckmann A graph G is called rainbow with respect to an edge coloring if no two edges of G have the same color. Given a host graph H and a guest graph G ⊆ H, an edge coloring of H is called G-anti-Ramsey if no subgraph of H isomorphic to G is rainbow. The anti-R...

متن کامل

Rainbow Connection in Graphs with Minimum Degree Three

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. This concept of rainbow connection in graphs was recently introduced by Chartrand et al.. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. The computation of rc(G) ...

متن کامل

Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

A path in an edge-colored graph G is rainbow if no two edges of it are colored the same. The graph G is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph G is strongly rainbow-connected. The minimum number of colors needed to make G rainbow-connected is known as the rainbow connection number...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2017